Received: May 6, 1977

SHORT COMMUNICATION

A Simple Method **for the Purification of Fluorine**

EBERHARD JACOB and KARL O. CHRISTE

Abt. Physikalische Chemie, M.A.N.-Neue Technologie, Postfach 50 06 20, D-8000 Munchen 50, Germany and Rocketdyne, a Division of Rockwell International, Canoga Park, California 91304, USA

A simple method for the purification of fluorine gas is described. With the exception of nitrogen and argon, all impurities usually present in commercial fluorine can be readily removed by 1) conversion of 0₂ to nonvolatile O₂ salts, and 2) a 70 to 63°K trap-to-trap distillation.

Commercial fluorine gas contains 1-2% of impurities, primarily 0₂, N₂ and HF with trace amounts of Ar, CO₂, CF₄, C₂F₆, C₃F₈, COF₂, NF₃, OF₂, SiF₄, SF₆, SO₂F₂, and others [1-5]. For most preparative purposes the **O2 content of fluorine does not interfere with the desired reactions,** and the purification of F₂ can be limited to the removal of HF by a NaF scrubber. For example, a nearly quantitative synthesis of IrF₆ is possible by heating Ir metal in an atmosphere of 20% F₂ and 80% O₂ [6]. However, **there are applications, where oxygen free fluorine is needed. A typical example is the HF-DF chemical laser. It is known[7,8] that molecular** oxygen acts as an inhibitor for the chain branching reaction of H₂ and F₂. In addition, the presence of 0₂ causes the formation of water which is a **very strong deactivator for vibrationally excited HF or DF [9]. In order to obtain meaningful baseline data, oxygen free fluorine is required. Furthermore, in the syntheses of the very expensive platinum metal hexa**fluorides RuF₆, RhF₆, and PtF₆ the yield of the products is decreased by the formation of the undesired and volatile [10] 0_2^+ MF₆ salts. Similarly, in the syntheses of ReF₇ and OsF₆ the presence of $\overline{0}_2$ results in the **formation of the corresponding oxide pentafluorides. Other applications**

requiring high purity fluorine include calorimetry **[l], and spectroscopic [ll, 121 and analytical [3] studies.**

Previously described methods for the purification of fluorine involved either low-temperature distillation [2-41, low-temperature uv-photolysis [13], or the pyrolysis of K₂NiF₆ in the presence of KF[4]. These methods **have the following shortcomings. The low-temperature distillations require rather complex and expensive equipment which is beyond the reach of most laboratories. The low-temperature uv-photolysis involves the irradiation** of liquid fluorine in a glass apparatus to convert O₂ to the less volatile 0₂F₂, followed by a distillation at 90°K. This method is not suitable for **scale-up, and the handling of larger amounts of liquid fluorine in a glass** apparatus presents a potential hazard. The pyrolysis of K₂NiF₆-KF mixtures **is somewhat cumbersome, because the bulk of the material and not the impurity must be converted to a nonvolatile compound.** In **this paper, we describe an alternate method which we have found to be more convenient than those previously reported.**

(1 **) Removal of Oxygen** We have found that the well known [14-16] reaction

$$
0_2 + F_2 + nSBF_5 \xrightarrow{\Delta E} 0_2^+ SbF_6^- \cdot (n-1)SbF_5
$$

is ideally suited for the removal of oxygen impurities from fluorine. Either heating [14] or uv-photolysis [15] can be used for activation of **the reaction.** Of **these two activation energy sources, thermal activation** is **preferred owing to its scalability and simplicity.**

In a typical example, crude F_2 (17 g, 500 mmol) [17] and SbF₅ (2.1 g, **10 mmol) [18] in a 1.2a.Monel reactor were heated for 2 hto 460°K. The vessel** was cooled to 90°K and the F₂ was distilled into a container kept at 77°K. The excess of unreacted SbF₅ was removed from the Monel vessel by pumping **at room temperature. The vessel was opened in a dry box and contained 1.1 g of a white solid which was identified by its vibrational spectra [16] as 0;Sb2Fil. The above procedure was repeated with pretreated F2. In this case, no evidence for the formation of any 0; salt was obtained and the reaction vessel showed clean inner surfaces. It can therefore be assumed** that the oxygen was quantitatively removed by a single heating cycle.

(2) Removal of Trace Impurities

It is known that impurities which have no measurable vapor pressure at 90°K can be removed from F₂ by a 90 to 77°K trap-to-trap distillation. For the removal of the more volatile impurities CF_4 , NF_3 , and OF_2 , however, **lower temperatures are required.** In **our experience, a 70 to 63°K trap-totrap distillation can be carried out with relative ease and removes all** remaining impurities, except for N₂ and Ar which usually do not interfere with most applications. Since the amount of N₂ present in commercial F₂ **can vary strongly depending on the batch and supplier, no meaningful** number can be quoted for the overall purity of the F₂ obtained by our **method. The temperature of 63°K (nitrogen slush bath) is easily obtained** by either pumping on liquid N₂ or by passing a stream of helium, precooled to 77°K, through liquid N₂. The temperature of 70°K is obtained either by **passing He through liquid N2 or by allowing a 63°K trap to gradually warm** towards 70°K. The purity of F₂ after two 70 to 63°K trap-to-trap **distillations was tested by recording its infrared spectrum as a solid [12] at 12°K. No detectable impurities were observed. The absence of impurities volatile at 70°K but nonvolatile at 63°K in the purified fluorine was established by mass spectroscopy.**

Thus, a 70 to 63°K trap-to-trap distillation combined with the O₂ scavenging method using SbF₅ provides a convenient purification method for **fluorine.**

One of us (KOC) is indebted to Drs. L. R. Grant and C. J. Schack for helpful discussions and to the Office of Naval Research,Power Branch, for financial support.

- **1 (a) L. Stein, E. Rudzitis and J. L. Settle, Report ANL-6364 (1961). (b) E. Greenberg, 3. L. Settle, H. M. Feder and W. N. Hubbard** J. Phys. Chem., 65 (1961) 1168. **2 G. de Jachy and J. Gillardeau, Bull, Sot. Chim. France, L (1970)**
- **2747.**

³ E. Jacob, Z. Anorg. Allg. Chem., 377 (1970) 267.

- **L. 8. Asprey, J. Fluor. Chem., L (1976) 359.**
- **Inorganic Fluorine Compounds," Air Products and Chemicals, Inc., Industrial Gas Division, Allentown, Pa 18105.**
- **E. Jacob, unpublished results.**
- **J. B. Levy and B.K.W. Copeland, J. Phys. Chem., 67 (1963) 2156,** and 69 (1965) 408.
- **J. H. Sullivan, R. C. Feber and J. W. Starner, J. Chem. Phys., 62 (1975) 1714, and references cited therein.**
- **J. K. Hancock and b!. H. Green, J. Chem, Phys., 57 (1972) 4515.**
- **M. J. Vasile and W. E. Falconer, J. Chem. Sot. Dalton, (1975) 316.**
- **E. Jacob and J. Goubeau, Ber. Bunsenges. Physik. Chem., 74 (1970) 992.**
- **T. 11. Niemczyk, R. R. Getty and G. E. Leroi, J. Chem. Phys., 59 (1973) 5600.**
- **A. 'Smalc, K. Lutar and J. Slivnik, J. Fluor. Chem., 5 (1975) 287.**
- **J. B. Beal, C. Pupp and W. E. White, Inorg. Chem., S (1969) 828.**
- **J. Shamir and J. Binenboym, Inorg. Chim. Acta, 2 (1968) 37.**
- **D. E. McKee and N. Bartlett, Inorg. Chem., 12 (1973) 2738.**
- **Supplied by Kali-Chemie AG, Hannover.**
- **Supplied by Merck AG, Darmstadt, purification by double distillation.**